Tuesday, 8 July 2014

Military Researchers Design Real-life 'Transformer' Plane



UK aerospace and defense contractor BAE Systems have taken the wraps off several concepts it envisions as possible tools for the military in the decades to come — and if these designs are any guide, future battlefields are going to look like the set of a science fiction movie.

The most interesting of the concepts is called the Transformer, a stealth aircraft that's actually composed of three airplanes — a large, diamond-shaped model, and two smaller flanking planes.

The Transformer is theoretically capable of longer flights that conserve fuel by reducing overall aerodynamic drag.

Right now, the most common aerial refueling techniques are the probe-and-drogue and the boom method, both of which require the delicate mid-air synchronization of separate aircraft. The Transformer would conceivably make the prospect of longer missions easier by requiring fewer mid-air fueling runs.

Alongside the Transformer, the firm also unveiled several other concept vehicles, including a self-healing aircraft called the Survivor (see video above). This plane repairs its exterior in mid-flight using a lightweight adhesive fluid within a pattern of carbon nanotubes.

BAE's concept videos also include an aircraft capable of shooting a concentrated energy beam to disable missiles as well as an aircraft (see video below) with the ability to fabricate and deploy UAVs (unmanned aerial vehicles) using on-board 3D printers.

But while BAE's advanced research group is known for coming up with fascinating innovations, the company is careful to mention that the concepts are mere predictions of what might be possible by 2040.

"[W]e don't know exactly what sorts of aircraft technologies will be used in 2040 with any certainty," said Nick Colosimo, an engineering manager from BAE's R&D team, in a statement. "But it's great to be able to show the public some concepts that might be possible through projecting where today’s technology could get to."

Image:youtube BAE SYSTEM

Read full Article…

Saturday, 12 April 2014

Scientists 3D Print a 'Tumor' of Cancer Cells



Using 3D printing, researchers have made a tumor-like lump of cancer cells in the lab, and they say this lump shows a greater resemblance to natural cancer than do the two-dimensional cultured cells grown in a lab dish.

This more realistic representation of a tumor could aid studies on cancer and drug treatments, the researchers said.

To build the tumor-like structure, the researchers mixed gelatin, fibrous proteins and cervical cancer cells, then fed the resulting mixture into a 3D cell printer they had developed. Layer by layer, the printer produced a grid structure, 10 millimeters in width and length, and 2 millimeters in height.

That structure resembles the fibrous proteins that make up the extracellular matrix of a tumor, the researchers said.

The cells were then allowed to grow, and after five days, the growth took on a spherical shape. The spheres continued to grow for three more days.

The cervical cancer cells used by the researchers were HeLa cells, the "immortal" cell line that was originally taken from a cancer patient, Henrietta Lacks, in 1951. HeLa cells can multiply indefinitely and are the most common type of cells studied in cancer research.

In general, cancer studies involve cancer cells grown in the lab, which help scientists better understand the behavior of these abnormal cells. New cancer drugs are usually tested on such cells, in the lab, before being evaluated in human studies. Therefore, 2D models of cancer that consist of a single layer of cells grown in a dish have been created to assist research and testing of new drugs.

However, compared with such 2D cell cultures, the additional dimension of a 3D culture better reveals the tumor cells' characteristics, including their shape, their proliferation, and gene and protein expression, the researchers said.

"With further understanding of these 3D models, we can use them to study the development, invasion, metastasis and treatment of cancer using specific cancer cells from patients," said study researcher Wei Sun, a professor in the department of mechanical engineering at Drexel University, in Philadelphia.

"We can also use these models to test the efficacy and safety of new cancer treatment therapies and new cancer drugs," said Sun, who is also the editor-in-chief of the journal Biofabrication, in which the new research is published April 10.

The researchers also found that using certain parameters during printing made it possible for about 90% of cells to survive the printing process. The mechanical force of printing can damage cells.

This article originally published at LiveScience.

IMAGE: NATIONAL INSTITUTES OF HEALTH, NATIONAL CENTER FOR MICROSCOPY, TOM DEERINCK/ASSOCIATED PRESS

Read full Article…